ITC-Irst

lrst %

Aspect Oriented Programming

&
Aspect]

Mariano Ceccato
ceccato@itc.it

Outline

ne problem: Crosscutting concerns

ne Solution: Aspect Oriented Programming
ne Language: AspectJ

Examples

18/02/2006 Aspect Oriented Programming & AspectJ 2

The role of OOP

Object Oriented Programming (OOP) has been
proposed to make software
development/understanding easier.

Object are guite near to how humans see,
understand and think of the world.

18/02/2006 Aspect Oriented Programming & AspectJ 3

Drawing appl. example

Requirements:
Geometrical shapes (circles, points, lines and squares)
Draw, modify and delete geometrical shapes
Render the drawing

Abstract
Figure

wn
Q
c
)
1
o

i
Iululg\l\
"

18/02/2006 Aspect Oriented Programming & AspectJ 4

Functionalities mapping

The whole application is modularized according to the
entities (objects) composing the problem domain.
It should be easier for developers to:

Assign functionalities to objects.

Think of the application in terms of a set on objects,
Instead of a set of functionalities.

Circle Square Display
change radius F move change resolution
| | | |
move ! change dimension redraw

18/02/2006 Aspect Oriented Programming & AspectJ 5

Drawing appl. example

Display management functionality is isolated info the display class.

Display change notification is scattered through all the other
classes.

Notification responsibility belongs to the display but it is
implemented in the geometrical shape classes.

_—
—_—
L -
—
—

18/02/2006 Aspect Oriented Programming & AspectJ 6

Drawing appl. example

cl ass Point {
private int x, y;

public int getX() {
return x; }

public int getY() {
return y; }

public void set X(int x) {
this.x = x;
update(); }

public void setY(int y) {
this.y =y,
updat e(); "}

public void noveBy(int dx,
X += dx;
y += dy;
update(); }

public void update() {
Display d =
D spl ay. get Defaul t () ;
d. updat e() ;
d.commt();

i nt dy) {

18/02/2006

Aspect Oriented Programming & AspectJ

Point

Limitations of OOP et B

There are functionalities that do not fit on the
principal decomposition:

They traverse the principal decomposition of the
application.

They can not be assigned to (separated in) a
single modular unit.

Existing software often contains several
Crosscutting Concerns such as:

Logging, tracing, persistency, exception
handling.

18/02/2006 Aspect Oriented Programming & AspectJ 8

Scattering

The code implementing the same CC is spread in many
different modules.

In general there is no language support to understand
which modules have a role in the same concern.

Per si st ency

| | | | | |

| | | | | |

| | | | . 1 -
--

| | | | | |

O Ty RN PRy T assugunps R — — —

| | | | | |

| | | | | |

| | | | | |

| | | | |

lll
Di spl ay
18/02/2006 Aspect Oriented Programming & AspectJ

Tangling

The code pertaining to a
crosscutting concern is
Intermixed with the rest of the
module code.

The same module can be
affected by several
crosscutting concern.

Concerns can not be
separated into different
modules using standard
modularization mechanisms.

Crcle

Loggi ng
Debuggi ng

Per si st ency

Di spl ay

18/02/2006 Aspect Oriented Programming & AspectJ

10

Drawbacks

Understandability:
Crosscutting concerns break OOP guidelines.

It can be not so easy to see the presence of a
crosscutting concern (programming languages
don’t support it).

It can be hard to distinguish the principal
responsibility of a module from the crosscutting

concerns.

18/02/2006 Aspect Oriented Programming & AspectJ 11

Drawbacks

Maintenance:
Scattered functionalities could be hard to find.

Modifying a crosscutting concern requires to change a
lot of modules in the same time (loss of modularization

benefits)

When a change is required on a crosscutting concern
Mentally untangle the concern from the base code.

Perform the change.
Re-tangle concerns together with base code.

18/02/2006 Aspect Oriented Programming & AspectJ 12

Solution AOP I;l;gc %

AOP defines a new kind of module: the aspect
An aspect is able to isolate a crosscutting concern
A class should implement only its defining responsibility

A class should be oblivious of the presence of the
aspect.

The Asp%@

18/02/2006 Aspect Oriented Programming & AspectJ 13

Drawing appl. example

Drawing figure classes

contain only their own defining functionalities
are oblivious of the notification mechanism

The naotification aspect

knows when each figure requires display update

18/02/2006

gl
-
-+

n
Q
c
)
1
o

Notify

Line

Aspect Oriented Programming & AspectJ

14

Aspect Oriented Programming

The aspect looks at the system execution and
when/whether the service is required

The aspect stops the main execution
The service Is started and executed on the current object
The execution is resumed

e e e e e e —— -

i i : Displa
Circle Point Line i Notify play
— — §< _____ Aspect —
\\ A
! \ /
__ N /
S _-"

18/02/2006 Aspect Oriented Programming & AspectJ 15

Example - OOP

cl ass Point {
private int x, y;

public int getX() {
return x; }

public int getY() {
return y; }

public void set X(int x) {
this.x = x;
update(); }

public void setY(int y) {
this.y =y,
updat e(); "}

public void noveBy(int dx, int dy) {
X += dx;
y += dy;
update(); }

public void update() {
Display d =
D spl ay. get Defaul t () ;
d. updat e() ;
d.commt();

18/02/2006 Aspect Oriented Programming & AspectJ

16

Example - AOP

cl ass Point {
private int X, Vy;

public int getX() {
return x; }

public int getY() {
return y; }

void set X(int x) {
X = X;

| | }

public void noveBy
(int dx, int dy) {

X += dx;
y += dy;
| }
}
18/02/2006

Aspect Oriented Programming & AspectJ

17

Example - AOP

cl ass Point {
aspect Change{
private int x, y; _ _ _
public void Point.update() {
public int getX() { Display d = Display.getDefaul t();
return x; } d. update() ;
d.commt(); }
public int getY() { _ . .
return y; } poi ntcut change(Point p): this(p) && (
+— execution(void Point.setX(int)) ||
public void setX(int x L -execution(void Point.setY(int)) ||
is.X = X execution(void Point.noveBy(int, 1nt))
} 1)
after(Point p): change(p) {
p. update();}
o)
public void noveBy
(int dx, int dy)
X += dx;
‘ y += dy; ‘
}
18/02/2006 Aspect Oriented Programming & AspectJ 18

Dynamic crosscutting

The crosscutting concern is implemented by modifying the program
control flow.

The points in the control flow that require the concern are said join

points
An aspect use pointcuts to locate join points in the base code

When the control flow reach a join point, the aspect takes control
and it execute the matching advice

|
\h

]/

—
:
<

Crcle Gircle

18/02/2006 Aspect Oriented Programming & AspectJ 19

Quantification (pointcut)

cl ass Point {

public void set X(int x) {

this.x = Xx;
update(); } poi nt cut change():
execution(void Point.setX(int));

o |

18/02/2006 Aspect Oriented Programming & AspectJ 20

Aspect] Pointcut Model

Native pointcuts intercept:
Method/constructor invocations
Method/constructor executions
Field accesses
Exception handling
Class initialization

18/02/2006 Aspect Oriented Programming & AspectJ 21

Pointcut composition

Composition of simple pointcuts using:

Union
Intersection
Negation

execution(void Point. noveBy(int,

i nt))

execution(void Point.setY(int))

execution(void Point.setX(int))

poi nt cut change():
execution(void Point.setX(int) |
execution(void Point.setY(int)) |
execution(void Point.noveBy(in i

t,

18/02/2006

Aspect Oriented Programming & AspectJ

22

Context exposition

The join point context can be exposed by the pointcut:
Method parameters

Caller object
Called object

18/02/2006

cl ass Poi nt {

public void set X(int x) {
this.x = x;
update(); }

poi nt cut pl(Point p):
&& this(p) ;

Aspect Oriented Programming & AspectJ

23

Pointcut composition

poi nt cut change():
execution(void Point.setX(int)
execution(void Point.setY(int)
execution(void Point.noveBy(in

) ||
) |
t, 1nt));

poi nt cut pl(Point
& & this(p) ;

p):

X Intersection/

poi nt cut change(Poi nt p):
this(p) &&

)i

execution(void Point.setX(i
execution(void Point.setY(i

nt)
nt)
execution(void Point.noveBy(in

) ||
) 1
t, 1nt))

18/02/2006 Aspect Oriented Programming & AspectJ

24

Advices irst

Advices are method-like constructs attached to join points:
Before advice is executed before the corresponding join point is reached.
After advice is executed after the corresponding join point.

Around advice is executed instead of the corresponding join point. The portion
of code in the join point can be run in the advice body.

An advice can use the context exposed by the pointcut:
Actual parameters
Caller/called object

after(Point p):
pl%n)

Systemout.println(“Point notifies update”);
$.update();

18/02/2006 Aspect Oriented Programming & AspectJ 25

Weaving aspect code

Aspects and classes are weaved together:

Fresh fields and methods are generated for fields and method
iIntroductions.

For each pointcut, the join points are computed.
Advice code is inserted in the corresponding join points

The weaver output is OO-compliant and it is compiled using the
standard compiler.

18/02/2006 Aspect Oriented Programming & AspectJ 26

Example:

Observer Design Pattern irst J&=

<<interface>>
<<interface>> Subject
Obser\-/er addObserver(Observer 0)
refresh(S;J\bject S) removeQObserver(Observer o)
! notifyObservers()
:
I A
I I
| |
1 I
Screen €----=-=-=--= Point
HashSet observers
refresh(Subject s) addObserver(Observer 0)
removeObserver(Observer 0)
notifyObservers()

18/02/2006 Aspect Oriented Programming & AspectJ 27

References

http://www.eclipse.org/aspect|/

http://www.eclipse.org/ajdt/

http://aosd.net/2006/index.php

http://star.itc.it/ceccato/

18/02/2006 Aspect Oriented Programming & AspectJ 28

