Java User Group Paclova

f* Plan of presentations

\jmﬁg
* |n this first presentation | will introduce the
values, the principles and the practices.

* We will learn the terms tipical of xp and agile
development.

* |In the second (next) presentation will be held
in March (?) and it will be more values and
process oriented. The agile manifesto. Unified
process versus light processes.

 Why XP works and why XP is or not accepted
in Italy?

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07

f* Cosa e XP?

* eXtreme Programming

* E una delle metodologie cosiddette agili
per lo sviluppo di software.

* Le metodologie agili nascono per
svincolarsi da metodologie troppo rigide
mantenendo pero un approccio

disciplinato

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07

J/‘“é Note To Programmers
__

Note To Programmers

Even programmers can be whole people in the real world.
XP is an opportunity to test yourself, to be yourself, to
realize that maybe you've been fine all along and just
hanging with the wrong crowd.

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07

B Edizioni di XP

TR
_1 @ﬂf:b

Padeva

e || libro di riferimento e

* EXtreme Programming EXplained embrace the
change

e Esistono due edizioni
- La prima del 1999
- La seconda del 2004

* Entrambre scritte da Kent Beck e entrambe
con la prefazione di Erich Gamma

- Kent Beck e Erich Gamma hanno fatto insieme
una “little thing”

Introduction to eXtreme Programming (

©Paolo Foletto - JUG Padova, 2007 02/10/07

f* Cosa e XP?

* Extreme Programming (XP) is about social
change

* |ncipit della seconda edizione
* Definizione data nella prima versione

» XP is a lightwheight methodology for small-to
medium-sized teams developing software in
the face of vague or rapidly changing
requirements

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07

f* Cosa e XP?

Padeva;

 Dopo 5 anni di evoluzione e cambiamenti
« XP is lightweight

- In XP fai solamente quello che € necessario per
creare valore per il cliente

 XP is a methodology based on addressing
constrains in software development.

« XP can work with team of any size

« XP adapts to vague or rapidly changing
requirements

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07

)

)

__E:
=n 8
=T
=
l'-._l':

!
ol
i)

Introduction to eXtreme Programming (

Da dove arriva?

* Nasce nella primavera del 1996 grazie a
Kent Beck.

* Viene applicata in un progetto di
gestione paghe alla Chrysler

©Paolo Foletto - JUG Padova, 2007 02/10/07

(@)
E=
=
&
(O
| -
(@)
O
| -
al
)
=
()
| -
e
X
O
O
-
C
O
-
O
-
©
O
3=
=

DEE-_-.L#_I};.: b 1004

©Paolo Foletto - JUG Padova, 2007

02/10/07

Introduction to eXtreme Programming

 Comunicazione
* Feedback

* Semplicita

* Coraggio

* Rispetto

©Paolo Foletto - JUG Padova, 2007

XP si basa su 4 (+1) valori

02/10/07

10

Introduction to eXtreme Programming

Comunicazione

* Tra sviluppatori
* Tra sviluppatori e utenti finali
* Tra manager, sviluppatori e utenti finali

©Paolo Foletto - JUG Padova, 2007 02/10/07

11

Feedback

fah)

o

* Rilasci frequenti
* Test di accettazione da parte dell'utente

* Azioni immediate in risposta ai risultati del test
di accettazione

Introduction to eXtreme Programming (e

©Paolo Foletto - JUG Padova, 2007 02/10/07 12

fah)

o

* Nella progettazione:

* Nel codice realizzato

debug

Introduction to eXtreme Programming (e

©Paolo Foletto - JUG Padova, 2007

Semplicita

 — Scomposizione del progetto in unita piccole

* Nella realizzazione dei test e quindi nel

02/10/07

13

Coraggio

i<

T
=1 FE)
[=F
o=
l'-._l':

* Nell’affrontare cambiamenti di requisiti.
* Nell’affrontare nuove tecnologie.
* Nel migliorare continuamente il codice.

Introduction to eXtreme Programming (e

©Paolo Foletto - JUG Padova, 2007 02/10/07 14

B
C'_":‘{E_jlﬁ'
o

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007

The previous four values point to one that lies
below the surface of the other four: respect. If
members of a team don't care about each other
and what they are doing, XP won't work. If
members of a team don't care about a project,
nothing can save it.

Every person whose life is touched by software

development has equal value as a human being.

No one is intrinsically worth more than anyone
else. For software development to
simultaneously improve in humanity and
productivity, the contributions of each person on
the team need to be respected. | am important
and so are you.

02/10/07

Rispetto

15

Introduction to eXtreme Programming

Chapter 5. Principles

« Values are too abstract to directly guide behavior.

 Long documents are intended to communicate, so are daily

conversations. Which is the most effective? The answer
depends partly on context and partly on intellectual principles.
In this case, the principle of humanity suggests conversation
meets the basic human need for connection and so is the
preferred form of communication, all other things being equal.
Written communication is inherently more wasteful. \While
written communication allows you to reach a large audience, it
IS a one-way communication. Conversation allows for
clarification, immediate feedback, brainstorming together, and
other things you can't do with a document. Written
communication tends to be taken as fact or rejected outright,
neither of which is an invitation to increased communication.

©Paolo Foletto - JUG Padova, 2007 02/10/07 16

|

Introduction to eXtreme Programming (

lova)

Humanity people develop software

Economics Somebody has to pay
for all this

Mutual Benefit Every activity
should benefit all concerned.

Self-SimiIarity try copying the
structure of one solution into a new
context, even at different scales

Improvement in software

development, "perfect” is a verb, not an
adjective.

Diversity Software development

teams where everyone is alike, while
comfortable, are not effective

Reflection Good teams don't just do

their work, they think about how they are
working and why they are working.

©Paolo Foletto - JUG Padova, 2007

Principi

Flow Flow in software development is

delivering a steady flow of valuable
software by engaging in all the activities of
development simultaneously

Opportunity Learn to see problems
as opportunities for change

Redundancy ves, redundancy

Failure s you're having trouble
succeeding, fail.

Quality Sacrificing quality is not
effective as a means of control

Baby Steps It's always tempting to
make big changes in big steps

Accepted Responsibility

Responsibility cannot be assigned; it can
only be accepted

02/10/07 17

Humanity

* People develop software. This simple, inescapable fact
invalidates most of the available methodological advice. Often,
software development doesn't meet human needs,
acknowledge human frailty, and leverage human strength.

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07 18

J"\ Humanity

& P-
What do people need to be good
developers?

. Basic safety freedom from hunger, physical harm, and
threats to loved ones. Fear of job loss threatens this need.

. Accomplishment the opportunity and ability to contribute
to their society.

. Belonging the ability to identify with a group from which
they receive validation and accountability and contribute to
its shared goals.

. Growth the opportunity to expand their skills and
perspective.

. Intimacy the ability to understand and be understood
deeply by others.

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07

19

f* Un progetto XP

_»f / {\b

i

OV

P

7)

v
{ "
A

Extreme Programming

T

ey LISer Stony

w«fmems Froject Velocity Bugs
@ P/fl_:;st\\ Customer

Extreme Programming Project

Test Scenarios

User Stories

: Sy stem R
elease . v Accentance
Al'ﬂhlt':?ﬂtllfﬂlmmaphm . . Flan Tteration Yersion P ﬂﬂﬂfwml Small
Spike Plﬂﬂﬂlﬂg@\ 4 Tests Releases
Uncerain Canfident Mext [teration
Estimates Estimates
Splkﬂ Copynght 201 1. Doavan Wells

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07 20

Extreme Frogramming

Release
Plan

User Stories Unfinished Tasks

Project i
Next velocity FItera‘tmn

Iteration

Bugs

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007

[teration

lterazione

@\Ennm Ciut

New User Story,
Project Velocity

&

lteration

Learn and
Communicate

Flan

Planning

Failed Acceptance
Tests

Development

[ey

Functionality
~—— —aLatest

~.BU8 FXES w Yieraion

.-H
uay by Doy J

Copynght 20040 1. Doavan Wells

02/10/07 21

|

Introduction to eXtreme Programming

= v ~

Sviluppo

G2

G

OV

P 4 Development @zoomout
rF s
Extrema F'I"EI!_II"-EI"I"II"I‘III"I{I
Learn and
Communicate
UﬂﬁﬂlShEd Fair Frogramiming
Iteration Tasks Refactor Mercilessly New
PlElIl Ton Much love People Around] .
Share
Tasks |00 ARG Carde //,Functmnallty
. 100% Unit
. T .
| Meeting NextTask | Code Ownership
Failed Acceptance m\ ar Failad _k
TEV' "™ Acceptance Test) Accep;m\‘
Test Passed Bug FIKES

Da_}:" bF DH-F Copynght J). Doevan Wells

©Paolo Foletto - JUG Padova, 2007 02/10/07 22

Condivisione (?) Proprieta collettiva del codice

e r 4 - | Collective Code Ownership @zoom out
E EITI'#!.E Programiming
- Move People
0 ERE Around 100%
(@)) ardas .
e Simple 1 Unit
0 Design Wi Tests
Camplex Change Meed
()] Prahl Fair = Passed
= et — Help Run All Unit /
© Next Task pair (pegte Unt v New Uni | Tests
= or Failed Up ., lest Pair _ &8s Continuous |Run
> =a Unit «—— I — : Failed
@© Acceptance Passed Programming e, Integration Acceptance
Test uni 4 Functianality Test
9o Test @, Tes
c Simple Complex \
(@) Code Code
= Acceptance
-] ¥ Test
© Retactor p d
o : asse
b Copyright 2000 1. Domvan Wells MEI‘CI]ESSIF
£
©Paolo Foletto - JUG Padova, 2007 02/10/07 23

B
'C_-"I{ v -"1 .
») 4 " 4 Planning/Feedback Loops

EHI#! Programiming RE.']EE[SE‘ Plﬂﬂ
Months

Iteration Plan
Weeks

Acceptance Test
Days

Stand Up Meeting

One Day

Pair Negotiation

Huursj

Unit Test

Mhﬂﬂei(/F

Pair Programming

Code

Coprright 20000 1 Poaovan Wells

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07 24

Introduction to eXtreme Programming

Chap 2 Learning to Drive

* This is the paradigm for XP. Stay aware.
Adapt. Change.

* Everything in software changes. The
requirements change. The design changes.
The business changes. The technology
changes. The team changes. The team
members change. The problem isn't change,
because change is going to happen,; the
problem, rather, is our inability to cope with
change.

©Paolo Foletto - JUG Padova, 2007 02/10/07

25

Energized work

A BGITATION

¥ SIENS

e Ciascun team adatta alla propria specifica
sifuazione ed esigenze ciascun principio

©Paolo Foletto - JUG Padova, 2007 02/10/07 26

—
L-]

£

=Y

<P

Introduction to eXtreme Programming

P,

Q)
o
=]
r_:_l':

o=
)

Regole e pratiche di XP - Pianificazione

“User stories”

— Scritte dal cliente

- Massimo di 3 settimane di lavoro
“"Release Planning”

— Combina esigenze di manager e clienti con le esigenze di
sviluppo

“Small releases”

- E pil facile intervenire in caso di problemi

“Iteration planning”

— Suddivisione in “tasks” delle “user stories”

©Paolo Foletto - JUG Padova, 2007 02/10/07

f* Pratiche di XP - Codifica

Progettare il test prima
— Facilita la scrittura del codice

— “Costringe” a rispettare i requisiti definiti dalle
“user stories”.

“Pair Programming”

— Migliora la qualita del software. _%ﬁga,\

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07 28

i
o=
)

.-":'I
N —
ul
L
o,

Introduction to eXtreme Programming

Pratiche di XP - Codifica

“Collective Code Ownership”

— Chiunque puo modificare o correggere qualsiasi modulo software.

— Responsabilita piu distribuite.
“"No overtime”
“Forty hours a week”

“Sustainable pace” ritmo sostenibile
— Riduce il numero di errori.

— Migliora |la soddisfazione degli sviluppatori.

— Neanche aggiungere persone ad un progetto migliora situazioni

critiche.

©Paolo Foletto - JUG Padova, 2007

02/10/07

29

I NG
JUG

Introduction to eXtreme Programming

Pratiche di XP - Progettazione

G_

o [olVEE)

“Customer (always ?) on site”

-Per definire le “user stories”, per concordare i rilasci, per provare e
collaudare il software il prima possibile.

“Simplicity”

— Contenere sempre le singole unita di lavoro entro certi limiti aiuta
la pianificazione, il test e lo sviluppo.

“Spike solutions”

— Quando ci sono incertezze nelle stime dovute ad incognite
tecnologiche, sviluppare piccoli prototipi con |‘obiettivo di ridurre
il rischio.

“Refactor”

— Non appena possibile modificare parti di codice complesso per
semplificare

©Paolo Foletto - JUG Padova, 2007 02/10/07 30

f* Pratiche di XP: Testing

YUG_

Introduction to eXtreme Programming

Paglova
“TDD Test Driven Development”

sviluppo guidato dal test

W Bruno Bossola

“Unit tests”

- 1l test deve essere creato PI1Ma della stesura del codice

tramite appropriati strumenti per I'automazione che fanno parte
degli strumenti di sviluppo.

— Devono essere trattati alla stessa stregua del codice.

- I moduli software modificati successivamente devono superare i
test scritti precedentemente.

— Alla scoperta di un baco la prima azione da intraprendere ¢ la
riscrittura del test.

©Paolo Foletto - JUG Padova, 2007 02/10/07 31

€

Introduction to eXtreme Programming

Pratiche di XP: Testing

i
o=
L

“Acceptance tests”
— Verificano che le “user stories” siano rispettate

— Vanno scritti con i clienti subito dopo aver sviluppato le “user
stories”

— Solo il superamento di “acceptance tests” modifica lo stato di
avanzamento del progetto.

©Paolo Foletto - JUG Padova, 2007 02/10/07

32

adeval

boco

Introduction to eXtreme Programming (

Sit Together Develop in an open space
big enough for the whole team

Whole Team inciude on the team

people with all the skills and perspectives
necessary for the project to succeed

Informative Workspace make
your workspace about your work

Energized WorkWork only as

many hours as you can be productive and only
as many hours as you can sustain.

Pair Programming write all

production programs with two people sitting at
one machine

Stories pPian using units of customer-
visible functionality.

Weekly Cycle Plan work a week at a

time

©Paolo Foletto - JUG Padova, 2007

Primary Practices

Quarterly Cycle Pian work a
quarter at a time

Slack n any plan, include some

minor tasks that can be dropped if you
get behind

Ten-Minute Build

Automatically build the whole system
and run all of the tests in ten minutes

Continuous Integration

Integrate and test changes after no
more than a couple of hours

Test-First

Programming write a failing

automated test before changing any
code

Incremental Design invest
in the design of the system every day

02/10/07 33

f* Primary and corollary

» Cosa distingue le pratiche primarie da quelle
corollarie?

e E'un orientamento alla diminuzione del
rischio

The practices in this chapter seem to me to be difficult or dangerous to
implement before completing the preliminary work of the primary practices.
If you begin deploying daily, for example, without getting the defect rate
down close to zero (with pair programming, continuous integration, and
test-first programming); you will have a disaster on your hands. Trust your
nose about what you need to improve next. If one of the following practices
seems appropriate, give it a try. It might work or you might discover that
you have more work to do before you can use it to improve your
development process.

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07 34

|
* Real Customer

Involvement make people whose

lives and business are affected by your
system part of the team

Incremental Deployment
When replacing a legacy system,
gradually take over its workload
beginning very early in the project

Team Continuity keep
effective teams together

Shrinking Teams As ateam

grows in capability, keep its workload
constant but gradually reduce its size

Root-Cause Analysis Every

time a defect is found after development,
eliminate the defect and its cause

Introduction to eXtreme Programming (

Shared Code Anyone on the

team can improve any part of the system
at any time

©Paolo Foletto - JUG Padova, 2007

Corollary practices

Code and Tests maintain only

the code and the tests as permanent
artifacts. Generate other documents from
the code and tests

Single Code Base There is

only one code stream. You can develop
in a temporary branch, but never let it live
longer than a few hours

Daily Deployment put new
software into production every night

Negotiated Scope

Contract write contracts for

software development that fix time, costs,
and quality but call for an ongoing
negotiation of the precise scope of the
system

Pay-Per-Use With pay-per-use
systems, you charge for every time the
system is used

02/10/07 35

|

Shared Code

2.0+ Differenza tra la prima edizione e la seconda si passa dal

=

Introduction to eXtreme Programming

“dover” al “poter” migliorare il codice

Anyone on the team can improve any part of the system at any time. If
something is wrong with the system and fixing it is not out of scope for
what I'm doing right now, | should go ahead and fix it.

One objection I've heard is that if no one person is responsible for a piece
of code, then everyone will act irresponsibly. They will make expedient
changes, leaving a mess for the next person who has to touch the code.
The risk of this happening is why I've listed Shared Code as a corollary
practice. Until the team has developed a sense of collective responsibility,
no one is responsible and quality will deteriorate. People will make
changes without regard for the team-wide consequences.

There are other models of teamwork besides "every man for himself." The
team members can collectively assume responsibility not just for the
quality of what they deliver to users but also for the pride they take in their
work along the way. Pair programming helps teammates demonstrate their
commitment to quality to each other and helps them normalize their
expectations for what constitutes quality.

©Paolo Foletto - JUG Padova, 2007 02/10/07 36

|

=

Introduction to eXtreme Programming

The whole XP Team

adeva

Testers Testers on an XP team help customers choose and write automated system-level
tests in advance of implementation and coach programmers on testing techniques

Interaction Designers interaction designers on an XP team choose overall

metaphors for the system, write stories, and evaluate usage of the deployed system to find
opportunities for new stories

Architects Architects on an XP team look for and execute large-scale refactorings, write
system-level tests that stress the architecture, and implement stories

Project Managers Project managers on an XP team facilitate communication inside

the team and coordinate communication with customers, suppliers, and the rest of the
organization

Product Managers In XP, product managers write stories, pick themes and stories

in the quarterly cycle, pick stories in the weekly cycle, and answer questions as
implementation uncovers under-specified areas of stories

Executives Executives provide an XP team with courage, confidence, and accountability

©Paolo Foletto - JUG Padova, 2007 02/10/07 37

2>

ictﬁ@

e Technical Writers The role of technical publications on an XP team is to provide

Introduction to eXtreme Programming

early feedback about features and to create closer relationships with users

Users Users on an XP team help write and pick stories and make domain decisions during
development

Prog rammers Programmers on an XP team estimate stories and tasks, break stories
into tasks, write tests, write code to implement features, automate tedious development
process, and gradually improve the design of the system. Programmers work in close
technical collaboration with each other, pairing on production code, so they need to develop
good social and relationship skills.

Human Resources two challenges have been reported for human resources when
teams begin applying XP: reviews and hiring. The problem with reviews is that most reviews
and raises are based on individual goals and achievements, but XP focuses on team
performance. If a programmer spends half of his time pairing with others, how can you
evaluate his individual performance? How much incentive does he have to help others if he
will be evaluated on individual performance?

Evaluating XP team members individually need not be much different from evaluating them
before applying XP. In XP, valuable employees:

* Act respectful. Play well with others. Take initiative. Deliver on their commitments.

©Paolo Foletto - JUG Padova, 2007 02/10/07 38

Bibliografia

-F SV LOOK INSIDE!™

* Extreme Programming Explained:
Embrace Change (2nd Edition) by Explancs
Kent Beck e

Extreme

LOOK INSIDE!™

* Questioning Extreme Programming

* Extreme Programming Explained: |oen.

r"!ll‘.l'll'l'lll':l

Embrace Change (1st edition) by f i
Kent Beck

Introduction to eXtreme Programming (

©Paolo Foletto - JUG Padova, 2007 02/10/07 39

f* Alcuni riferimenti in italia

http://www.xplabs.it/

- La prima societa in italia

http://www.siforge.org/articles/2003/03/09-arrivare-a-xp.html

- Arrivare a XP (eXtreme Programming) - Intervista a Francesco Cirillo

http://digilander.libero.it/bbossola/seminari.htmi

— | seminari di Bruno Bossola

http://milano-xpug.pbwiki.com/

Introduction to eXtreme Programming

©Paolo Foletto - JUG Padova, 2007 02/10/07 40

http://www.xplabs.it/
http://digilander.libero.it/bbossola/seminari.html

Introduction to eXtreme Programming

Bibliografia

e http://www.objectmentor.com/
e http://www.extremeprogramming.org/
e http://www.xprogramming.com

e http://www.junit.org/index.htm

 http://threeriversinstitute.org

* http://c2.com/cgi/wiki e in particolare
» http://c2.com/cgi/wiki?PeopleProjectsAndPatterns

* http://www.extremejava.com/

©Paolo Foletto - JUG Padova, 2007 02/10/07 41

http://www.objectmentor.com/
http://www.xprogramming.com/
http://www.junit.org/index.htm
http://threeriversinstitute.org/
http://c2.com/cgi/wiki
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns

f* Informazioni sul JUG Padova

» Sito Web:
- http://www.jugpadova.it

* Mailing List:
- lAttenzione nuova mailing list su googlegroups
- http://groups.google.com/group/jugpadova

e Persone di riferimento

- Dario Santamaria
(dario.santamaria@jugpadova.it)

- Lucio Benfante (lucio.benfante@jugpadova.it)

Introduction to eXtreme Programming

- Paolo Dona (paolo.dona@jugpadova.it)

©Paolo Foletto - JUG Padova, 2007 02/10/07 42

