
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and 
other countries.

Closures in Java



September 2008 Closures in Java

2

License for use and distribution

This material is available for non-commercial 
use and can be derived and/or redistributed, as 
long as it uses an equivalent license.

Attribution-Noncommercial-
Share Alike 3.0 Unported

http://creativecommons.org/licenses/by-nc-sa/3.0/

You are free to share and to adapt this work under the following conditions: 
(a) You must attribute the work in the manner specified by the author or 

licensor (but not in any way that suggests that they endorse you or your use 
of the work); (b) You may not use this work for commercial purposes. (c) If 

you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same or similar license to this one.



September 2008 Closures in Java

3

About the author – Vítor Souza

Education:

Computer Science graduate, masters in Software 
Engineering – (UFES, Brazil), starting PhD at U. Trento.

Java:

Developer since 1999;

Focus on Web Development;

Co-founder and coordinator of ESJUG (Brazil).

Professional:

Substitute teacher at Federal University of ES;

Engenho de Software Consulting & Development.

Contact: vitorsouza@gmail.com



September 2008 Closures in Java

4

Summary

What are closures?

Java and closures;

The BGGA proposal;

The FCM proposal;

The CICE+ARM proposal;

Discussion.



September 2008 Closures in Java

5

What are closures?

FOLDOC:
A data structure that holds an expression and an 
environment of variable bindings in which that 
expression is to be evaluated.

Wikipedia:
A function that is evaluated in an environment 
containing one or more bound variables.

Most general definitions:

Closed variable environment;

1st class citizen.



September 2008 Closures in Java

6

What are closures?

In practice:

Blocks of code that access variables in the external 
scope;

Can be created dynamically;

Can be stored in variables;

Can be passed as parameters;

Can be invoked dynamically.



September 2008 Closures in Java

7

Simple example (Groovy)

def clos = { println "Hello, World!" }
clos()
closureMethod(clos)

def closureMethod(closure) {
  closure()
}

$ groovy Teste
Hello, World!
Hello, World!



September 2008 Closures in Java

8

Parameters and variables (Groovy)

def sum = { a, b -> a + b }  
def result = sum(7, 5)
println result             // 12

def doubleResult = { println result * 2 }
doubleResult()             // 24
result++
doubleResult()             // 26

The closure refers to a variable
that is external to it



September 2008 Closures in Java

9

Origins

The 50's, MIT: Lisp, lambda expressions 
(anonymous functions);

The 70's: Scheme - 1st LISP dialect to do static 
(lexical) binding, producing a closure (term 
imported from mathematics);

Smalltalk: 1st OO language to include closures:

Motivation: creation of control constructs in the API.



September 2008 Closures in Java

10

Creating a for-each using closures

void forEach(array, funct) {
  for (i = 0; i < array.size(); i++)
    funct(array[i])
}

def words = ["Closures", "are", "cool!"]
forEach(words) { 
  item -> print item + " "
}
println ""

There would have been no need to change the 
Java language to include the enhanced for if Java 
had closures before version 5...



September 2008 Closures in Java

11

And if I need something specific?

What if we had a statistical framework that times 
tasks and stores them in a database?

Would this control structure ever make into the 
language?

Now think transaction management...

Think the amount of frameworks out there...

// Times the execution and stores in the DB
// under the name “block-1”:
time("block-1") {
  // Your code here...
}



September 2008 Closures in Java

12

What about Java and closures?

First of all: Java is turing-complete;

Java has closures in the form of anonymous inner 
classes or the reflection API:

Are more verbose;

Do not allow compile-time checking;

Make refactoring difficult.



September 2008 Closures in Java

13

For each in Java using AICs

interface Closure<T> {
  void invoke(T arg);
}
public class Test {
  static <T> void forEach(T[] arr, Closure<T> fun) {
    for (int i = 0; i < arr.length; i++) {
      fun.invoke(arr[i]);
    }
  }
  public static void main(String[] args) {
    String[] words = new String[] { "A", "B", "C" };
    forEach(words, new Closure<String>() {
      public void invoke(String arg) {
        System.out.print(arg + " ");
      }
    }); 
  }
}



September 2008 Closures in Java

14

For each in Java using AICs

Further complications:

The invoke() method in the Closure interface does 
not declare any exceptions. You can't throw them;

The invoke() method does not declare any return 
type. You can't return anything;

Variables used in an AIC have to be final. To simulate 
a return value, you'd have to use an array of size 1.



September 2008 Closures in Java

15

Should we add closures to Java, then?

That question generated a lot of debate and three 
main propositions:

BGGA (a.k.a. “Full Closures”):
Name after the authors: Gilad Bracha, Neal Gafter, James 
Gosling and Peter von der Ahé.

FCM:
First Class Methods;

Authors: Stephen Coleburn and Stefan Schulz.

CICE+ARM:
Concise Instance Creation Expressions + Automatic 
Resource Management;

Authors: Bob Lee, Doug Lea and Joshua Bloch.



September 2008 Closures in Java

16

The prototypes

All proposals come with working prototypes;

BGGA is being included in OpenJDK 7;

Installation:

Install the latest JDK 6;

Copy the files from the prototype over the JDK.

Useful links:
BGGA: www.javac.info

OpenJDK: openjdk.java.net/projects/closures

FCM: docs.google.com/View?docid=ddhp95vd_0f7mcns

CICE+ARM: www.slm888.com/javac



September 2008 Closures in Java

17

The BGGA proposal

Can create closures in Java:
{ parameters => commands expression }

Changes the type system to add Function Types:
{ params => return-type throws exceptions }

Variables that are modified inside the closure 
receive the @Shared annotation;

Can assign closures to variables of a compatible 
interface type;

Unrestricted closures allow for control constructs 
syntax.



September 2008 Closures in Java

18

BGGA – Hello, World!

// Using only the expression.
String msg = { => "Hello, BGGA!" }.invoke();
System.out.println(msg);

// Using only a command.
{ => System.out.println("Hello, BGGA!"); }.invoke();

// Using parameters.
{ String msg => 
System.out.println(msg); }.invoke("Hello, BGGA!");

// Local variables can be declared inside!
int a = { int x => int y = x + 1; y * 2}.invoke(9);
System.out.println(a); // 20



September 2008 Closures in Java

19

BGGA – Function types

static void doIt() throws Exception {
  throw new Exception("doIt() threw exception!");
}
public static void main(String[] args) {
  {int, int => int} sum = { int a, int b => a + b };
  print(sum, 7, 8);
  { => void throws Exception } it = { => doIt(); };
  try {
    it.invoke();
  } catch (Exception e) {
    System.out.println(e);
  }
}
static void print({int, int => int} cl, int a, int b)
{
  int x = cl.invoke(a, b);
  System.out.println(x);
}



September 2008 Closures in Java

20

BGGA – Function types hierarchy

// { => Integer } is subtype 
// of { => Number }
{ => Number } p1;
p1 = { => Integer.valueOf(19) };

// { Object => void } is subtype 
// of { String => void }
{ String => void } p2;
p2 = { Object o => System.out.println(o); };

Can anyone tell me why?



September 2008 Closures in Java

21

BGGA – Using shared variables

static { => void } getPrintY() {
  @Shared int y = 10;
  return { => System.out.println(++y); };
}
public static void main(String[] args) {
  @Shared int x = 1;
  { => void } print = 

{ => System.out.println(x); };
  x++;
  print.invoke();  // 2

  print = getPrintY();
  print.invoke();  // 11
  print.invoke();  // 12
}

Does y even 
exist?!?



September 2008 Closures in Java

22

BGGA – Using compatible interfaces

interface Adder {
  int add(int x, int y);
}

/* In some other class' main method: */
Adder adder = { int a, int b => a + b };
int y = adder.add(10, 5);
System.out.println(y);

Are you thinking java.lang.Runnable?



September 2008 Closures in Java

23

BGGA – Control constructs

static void time(String s, { ==> void } f) {
  long t1 = System.nanoTime();
  f.invoke();
  long t = System.nanoTime() - t1;
  System.out.println("Block " + s + 

" executed in " + t + "ns");
}

public static void main(String[] args) {
  time("block-1") {
    int[] vet = new int[1000];
    for (int i = 0; i < 1000; i++)
      vet[i] = i * i;
  }
}



September 2008 Closures in Java

24

The FCM proposal

Makes methods 1st class citizens:

Methods: Class#method-name(params);

Constructors: Class#(params);

Properties: Class#property-name.

Uses reflection under the hood;

Unlike reflection, visibility rules apply;

Also adds new type: Method-type
#(return-type(param-types) throws exceptions)

invoke(), compatible interfaces, anonymous 
methods (closures).



September 2008 Closures in Java

25

FCM – Method literals

import java.lang.reflect.*;

public class ExampleFCM {
  String message;

  ExampleFCM(String message) {
    this.message = message;
  }

  void print() {
    System.out.println(message);
  }

  // Continues...



September 2008 Closures in Java

26

FCM – Method literals

  // Continued:
  public static void main(String[] args)

throws Exception {
    Constructor<ExampleFCM> constr;
    constr = ExampleFCM#(String);
    
    ExampleFCM obj;
    obj = constr.newInstance("Hello, FCM!");

    Method method = ExampleFCM#print();
    method.invoke(obj);
  }
}



September 2008 Closures in Java

27

FCM – Bound method references

  public static void main(String[] args)
throws Exception {

    // [...]
    ExampleFCM obj;
    obj = constr.newInstance("Hello, FCM!");
    
    // Before:
    Method method = ExampleFCM#print();
    method.invoke(obj);

    // After:
    Method boundMethod = obj#print();
    boundMethod.invoke();
  }
}



September 2008 Closures in Java

28

FCM – Method-types

static int add(int a, int b) {
  return a + b;
}

/* In the main method: */

// Declaring a variable of Method-type
#(int(int, int)) method;
method = ExampleFCM#add(int, int);
System.out.println(method.invoke(10, 5));

// Assigning to a compatible interface.
// Assume same Adder interface shown before.
Adder adder = method;
System.out.println(adder.add(6, 9));



September 2008 Closures in Java

29

FCM – Anonymous methods

// Creating an anonymous method.
List<String> list = ...
Collections.sort(list, 

#(String str1, String str2) {
  return str1.length() - str2.length();
});

// With no parameters, parentheses 
// can be omitted.
Executor exec = ...
exec.execute(#{
  // Your code here...
});



September 2008 Closures in Java

30

FCM – Java Control Abstraction

public static void 
          usingFileReader(#(void(FileReader)) block : 
          File file) throws IOException {
  FileReader reader = null;
  try {
    reader = new FileReader(file);
    block.invoke(reader);
  }
  finally {
    if (reader != null) {
      try {
        reader.close();
      } catch (IOException e) {
        // Ignore...
      }
  }
} // Continues...



September 2008 Closures in Java

31

FCM – Java Control Abstraction

// Continued, somewhere else:
usingFileReader(FileReader reader : file) {
  // Read file...
}



September 2008 Closures in Java

32

The CICE+ARM proposal

Java already has closures (anonymous inner 
classes), we just need some syntactic sugar;

CICE proposes to simplify AICs syntax:

SAM (single abstract method) classes;

External variables are automatically final and can be 
changed if declared public.

ARM proposes to simplify resource management:

Streams, readers/writers, connections... Anything that 
has to be disposed after use;

java.io.Closable?



September 2008 Closures in Java

33

CICE

// Without CICE:
List<String> list = ... ;
Collections.sort(list, new 
Comparator<String>() {
  public int compare(String s1, String s2) {
    return s1.length() - s2.length();
  }
});

// With CICE:
List<String> list = ... ;
Collections.sort(list,
  Comparator<String>(String s1, String s2) 
{ return s1.length() - s2.length(); });



September 2008 Closures in Java

34

Without ARM

BufferedInputStream is1 = null;
BufferedInputStream is2 = null;
try {
  is1 = ...;
  is2 = ...;
  // Use streams for something...
} finally {
  try {
    if (is1 != null)
      is1.close();
  } finally {
    if (is2 != null)
      is2.close();
  }
}



September 2008 Closures in Java

35

With ARM

do (BufferedInputStream is1 = ..., is2 = ...) 
{
  // Use streams for something...
}



September 2008 Closures in Java

36

Discussion – Pro-closures arguments

Closures will:

Simplify code and avoid non-elegant solutions;

Allow frameworks to specify control constructs;

Avoid polluted interfaces* (e.g. could simplify the 
java.util.concurrent API);

Closures are complex now as recursive functions were 
complex some day. For fans of Ruby, Python, Groovy, 
Scala and C# 2.0, it's not complex anymore...

Simplify the evolution of the Java programming 
language (see for each example).

* see http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/jsr166y/forkjoin/Ops.html



September 2008 Closures in Java

37

Discussion – Anti-closures arguments

Closures:

Are already present in Java in the form of AICs. We 
just need to simplify the syntax;

Are complex by themselves and, if combined with 
other complex stuff (Generics) becomes too much;

Are more related to functional programming and if you 
mix both programming styles things become nasty;

(BGGA) have confusing syntax. { and } are already 
used with other meanings;

Will lead to dialects because of control constructs;

Are being added for marketing reasons.



September 2008 Closures in Java

38

Discussion

Joshua Bloch: closures are against the “Feel of 
Java” (Gosling 1996 talk);

Gosling says he's misinterpreted the talk. Closures 
weren't added from the beginning because of time 
constraints;

Patrick Naughton confirms Gosling's version, 
saying that Bill Joy wanted Closures on Java since 
version 1.0*;

BGGA has already a draft for a JSR. All authors 
(except Bloch and Gosling) support it.

* see http://www.blinkenlights.com/classiccmp/javaorigin.html



September 2008 Closures in Java

39

BGGA Puzzler: what will be printed?
public class ClosuresPuzzler {
  static void test1b({ => void } closure) {
    closure.invoke();
    int x = 20;
    closure.invoke();
    System.out.println(x);
  }
  static void test1() {
    @Shared int x = 10;
    test1b({ => System.out.print((x++) + ", "); });
  }
  static void test2() {
    List<{ => int }> closures = new ArrayList<{ => int }>();
    @Shared int i = 0;
    while (i++ < 10)
      closures.add({ => i });
    int total = 0;
    for ({ => int } c : closures)
      total += c.invoke();
    System.out.println(total);
  }
  public static void main(String[] args) {
    test1();
    test2();
  }
}



Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and 
other countries.

Closures in Java


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

