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License for use and distribution

This material is available for non-commercial 
use and can be derived and/or redistributed, as 
long as it uses an equivalent license.

Attribution-Noncommercial-
Share Alike 3.0 Unported

http://creativecommons.org/licenses/by-nc-sa/3.0/

You are free to share and to adapt this work under the following conditions: 
(a) You must attribute the work in the manner specified by the author or 

licensor (but not in any way that suggests that they endorse you or your use 
of the work); (b) You may not use this work for commercial purposes. (c) If 

you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same or similar license to this one.
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Summary

What are closures?

Java and closures;

The BGGA proposal;

The FCM proposal;

The CICE+ARM proposal;

Discussion.
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What are closures?

FOLDOC:
A data structure that holds an expression and an 
environment of variable bindings in which that 
expression is to be evaluated.

Wikipedia:
A function that is evaluated in an environment 
containing one or more bound variables.

Most general definitions:

Closed variable environment;

1st class citizen.
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What are closures?

In practice:

Blocks of code that access variables in the external 
scope;

Can be created dynamically;

Can be stored in variables;

Can be passed as parameters;

Can be invoked dynamically.
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Simple example (Groovy)

def clos = { println "Hello, World!" }
clos()
closureMethod(clos)

def closureMethod(closure) {
  closure()
}

$ groovy Teste
Hello, World!
Hello, World!
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Parameters and variables (Groovy)

def sum = { a, b -> a + b }  
def result = sum(7, 5)
println result             // 12

def doubleResult = { println result * 2 }
doubleResult()             // 24
result++
doubleResult()             // 26

The closure refers to a variable
that is external to it
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Origins

The 50's, MIT: Lisp, lambda expressions 
(anonymous functions);

The 70's: Scheme - 1st LISP dialect to do static 
(lexical) binding, producing a closure (term 
imported from mathematics);

Smalltalk: 1st OO language to include closures:

Motivation: creation of control constructs in the API.
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Creating a for-each using closures

void forEach(array, funct) {
  for (i = 0; i < array.size(); i++)
    funct(array[i])
}

def words = ["Closures", "are", "cool!"]
forEach(words) { 
  item -> print item + " "
}
println ""

There would have been no need to change the 
Java language to include the enhanced for if Java 
had closures before version 5...
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And if I need something specific?

What if we had a statistical framework that times 
tasks and stores them in a database?

Would this control structure ever make into the 
language?

Now think transaction management...

Think the amount of frameworks out there...

// Times the execution and stores in the DB
// under the name “block-1”:
time("block-1") {
  // Your code here...
}
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What about Java and closures?

First of all: Java is turing-complete;

Java has closures in the form of anonymous inner 
classes or the reflection API:

Are more verbose;

Do not allow compile-time checking;

Make refactoring difficult.
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For each in Java using AICs

interface Closure<T> {
  void invoke(T arg);
}
public class Test {
  static <T> void forEach(T[] arr, Closure<T> fun) {
    for (int i = 0; i < arr.length; i++) {
      fun.invoke(arr[i]);
    }
  }
  public static void main(String[] args) {
    String[] words = new String[] { "A", "B", "C" };
    forEach(words, new Closure<String>() {
      public void invoke(String arg) {
        System.out.print(arg + " ");
      }
    }); 
  }
}
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For each in Java using AICs

Further complications:

The invoke() method in the Closure interface does 
not declare any exceptions. You can't throw them;

The invoke() method does not declare any return 
type. You can't return anything;

Variables used in an AIC have to be final. To simulate 
a return value, you'd have to use an array of size 1.
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Should we add closures to Java, then?

That question generated a lot of debate and three 
main propositions:

BGGA (a.k.a. “Full Closures”):
Name after the authors: Gilad Bracha, Neal Gafter, James 
Gosling and Peter von der Ahé.

FCM:
First Class Methods;

Authors: Stephen Coleburn and Stefan Schulz.

CICE+ARM:
Concise Instance Creation Expressions + Automatic 
Resource Management;

Authors: Bob Lee, Doug Lea and Joshua Bloch.
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The prototypes

All proposals come with working prototypes;

BGGA is being included in OpenJDK 7;

Installation:

Install the latest JDK 6;

Copy the files from the prototype over the JDK.

Useful links:
BGGA: www.javac.info

OpenJDK: openjdk.java.net/projects/closures

FCM: docs.google.com/View?docid=ddhp95vd_0f7mcns

CICE+ARM: www.slm888.com/javac



September 2008 Closures in Java

17

The BGGA proposal

Can create closures in Java:
{ parameters => commands expression }

Changes the type system to add Function Types:
{ params => return-type throws exceptions }

Variables that are modified inside the closure 
receive the @Shared annotation;

Can assign closures to variables of a compatible 
interface type;

Unrestricted closures allow for control constructs 
syntax.
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BGGA – Hello, World!

// Using only the expression.
String msg = { => "Hello, BGGA!" }.invoke();
System.out.println(msg);

// Using only a command.
{ => System.out.println("Hello, BGGA!"); }.invoke();

// Using parameters.
{ String msg => 
System.out.println(msg); }.invoke("Hello, BGGA!");

// Local variables can be declared inside!
int a = { int x => int y = x + 1; y * 2}.invoke(9);
System.out.println(a); // 20
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BGGA – Function types

static void doIt() throws Exception {
  throw new Exception("doIt() threw exception!");
}
public static void main(String[] args) {
  {int, int => int} sum = { int a, int b => a + b };
  print(sum, 7, 8);
  { => void throws Exception } it = { => doIt(); };
  try {
    it.invoke();
  } catch (Exception e) {
    System.out.println(e);
  }
}
static void print({int, int => int} cl, int a, int b)
{
  int x = cl.invoke(a, b);
  System.out.println(x);
}
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BGGA – Function types hierarchy

// { => Integer } is subtype 
// of { => Number }
{ => Number } p1;
p1 = { => Integer.valueOf(19) };

// { Object => void } is subtype 
// of { String => void }
{ String => void } p2;
p2 = { Object o => System.out.println(o); };

Can anyone tell me why?
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BGGA – Using shared variables

static { => void } getPrintY() {
  @Shared int y = 10;
  return { => System.out.println(++y); };
}
public static void main(String[] args) {
  @Shared int x = 1;
  { => void } print = 

{ => System.out.println(x); };
  x++;
  print.invoke();  // 2

  print = getPrintY();
  print.invoke();  // 11
  print.invoke();  // 12
}

Does y even 
exist?!?
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BGGA – Using compatible interfaces

interface Adder {
  int add(int x, int y);
}

/* In some other class' main method: */
Adder adder = { int a, int b => a + b };
int y = adder.add(10, 5);
System.out.println(y);

Are you thinking java.lang.Runnable?
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BGGA – Control constructs

static void time(String s, { ==> void } f) {
  long t1 = System.nanoTime();
  f.invoke();
  long t = System.nanoTime() - t1;
  System.out.println("Block " + s + 

" executed in " + t + "ns");
}

public static void main(String[] args) {
  time("block-1") {
    int[] vet = new int[1000];
    for (int i = 0; i < 1000; i++)
      vet[i] = i * i;
  }
}
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The FCM proposal

Makes methods 1st class citizens:

Methods: Class#method-name(params);

Constructors: Class#(params);

Properties: Class#property-name.

Uses reflection under the hood;

Unlike reflection, visibility rules apply;

Also adds new type: Method-type
#(return-type(param-types) throws exceptions)

invoke(), compatible interfaces, anonymous 
methods (closures).
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FCM – Method literals

import java.lang.reflect.*;

public class ExampleFCM {
  String message;

  ExampleFCM(String message) {
    this.message = message;
  }

  void print() {
    System.out.println(message);
  }

  // Continues...
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FCM – Method literals

  // Continued:
  public static void main(String[] args)

throws Exception {
    Constructor<ExampleFCM> constr;
    constr = ExampleFCM#(String);
    
    ExampleFCM obj;
    obj = constr.newInstance("Hello, FCM!");

    Method method = ExampleFCM#print();
    method.invoke(obj);
  }
}
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FCM – Bound method references

  public static void main(String[] args)
throws Exception {

    // [...]
    ExampleFCM obj;
    obj = constr.newInstance("Hello, FCM!");
    
    // Before:
    Method method = ExampleFCM#print();
    method.invoke(obj);

    // After:
    Method boundMethod = obj#print();
    boundMethod.invoke();
  }
}
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FCM – Method-types

static int add(int a, int b) {
  return a + b;
}

/* In the main method: */

// Declaring a variable of Method-type
#(int(int, int)) method;
method = ExampleFCM#add(int, int);
System.out.println(method.invoke(10, 5));

// Assigning to a compatible interface.
// Assume same Adder interface shown before.
Adder adder = method;
System.out.println(adder.add(6, 9));
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FCM – Anonymous methods

// Creating an anonymous method.
List<String> list = ...
Collections.sort(list, 

#(String str1, String str2) {
  return str1.length() - str2.length();
});

// With no parameters, parentheses 
// can be omitted.
Executor exec = ...
exec.execute(#{
  // Your code here...
});
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FCM – Java Control Abstraction

public static void 
          usingFileReader(#(void(FileReader)) block : 
          File file) throws IOException {
  FileReader reader = null;
  try {
    reader = new FileReader(file);
    block.invoke(reader);
  }
  finally {
    if (reader != null) {
      try {
        reader.close();
      } catch (IOException e) {
        // Ignore...
      }
  }
} // Continues...
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FCM – Java Control Abstraction

// Continued, somewhere else:
usingFileReader(FileReader reader : file) {
  // Read file...
}
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The CICE+ARM proposal

Java already has closures (anonymous inner 
classes), we just need some syntactic sugar;

CICE proposes to simplify AICs syntax:

SAM (single abstract method) classes;

External variables are automatically final and can be 
changed if declared public.

ARM proposes to simplify resource management:

Streams, readers/writers, connections... Anything that 
has to be disposed after use;

java.io.Closable?
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CICE

// Without CICE:
List<String> list = ... ;
Collections.sort(list, new 
Comparator<String>() {
  public int compare(String s1, String s2) {
    return s1.length() - s2.length();
  }
});

// With CICE:
List<String> list = ... ;
Collections.sort(list,
  Comparator<String>(String s1, String s2) 
{ return s1.length() - s2.length(); });



September 2008 Closures in Java

34

Without ARM

BufferedInputStream is1 = null;
BufferedInputStream is2 = null;
try {
  is1 = ...;
  is2 = ...;
  // Use streams for something...
} finally {
  try {
    if (is1 != null)
      is1.close();
  } finally {
    if (is2 != null)
      is2.close();
  }
}
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With ARM

do (BufferedInputStream is1 = ..., is2 = ...) 
{
  // Use streams for something...
}
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Discussion – Pro-closures arguments

Closures will:

Simplify code and avoid non-elegant solutions;

Allow frameworks to specify control constructs;

Avoid polluted interfaces* (e.g. could simplify the 
java.util.concurrent API);

Closures are complex now as recursive functions were 
complex some day. For fans of Ruby, Python, Groovy, 
Scala and C# 2.0, it's not complex anymore...

Simplify the evolution of the Java programming 
language (see for each example).

* see http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/jsr166y/forkjoin/Ops.html
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Discussion – Anti-closures arguments

Closures:

Are already present in Java in the form of AICs. We 
just need to simplify the syntax;

Are complex by themselves and, if combined with 
other complex stuff (Generics) becomes too much;

Are more related to functional programming and if you 
mix both programming styles things become nasty;

(BGGA) have confusing syntax. { and } are already 
used with other meanings;

Will lead to dialects because of control constructs;

Are being added for marketing reasons.
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Discussion

Joshua Bloch: closures are against the “Feel of 
Java” (Gosling 1996 talk);

Gosling says he's misinterpreted the talk. Closures 
weren't added from the beginning because of time 
constraints;

Patrick Naughton confirms Gosling's version, 
saying that Bill Joy wanted Closures on Java since 
version 1.0*;

BGGA has already a draft for a JSR. All authors 
(except Bloch and Gosling) support it.

* see http://www.blinkenlights.com/classiccmp/javaorigin.html
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BGGA Puzzler: what will be printed?
public class ClosuresPuzzler {
  static void test1b({ => void } closure) {
    closure.invoke();
    int x = 20;
    closure.invoke();
    System.out.println(x);
  }
  static void test1() {
    @Shared int x = 10;
    test1b({ => System.out.print((x++) + ", "); });
  }
  static void test2() {
    List<{ => int }> closures = new ArrayList<{ => int }>();
    @Shared int i = 0;
    while (i++ < 10)
      closures.add({ => i });
    int total = 0;
    for ({ => int } c : closures)
      total += c.invoke();
    System.out.println(total);
  }
  public static void main(String[] args) {
    test1();
    test2();
  }
}
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